Bartolomeo33 Posted February 4, 2013 Report Share Posted February 4, 2013 Bonjour, Quelqu'un connaît il l'expression analytique de l'équation de la déformée d'une poutre reposant sur 2 appuis (à ses extrémité) et sollicitée par une charge répartie mobile (le début et la fin de la charge se sont à des positions variables sur la poutre? Par exemple : - Longueur de la poutre / distance entre appuis = L - Début de la charge répartie à la côte horizontale a - Fin de la charge répartie à la côte horizontale b - b > a ; a > 0 et b < L - longueur de charge : b - a - Equation de la déformée dans les 3 tronçons de poutre ? Merci d'avance ! Quote Link to comment Share on other sites More sharing options...
Khadimtafa Dramé Posted February 4, 2013 Report Share Posted February 4, 2013 Quote Link to comment Share on other sites More sharing options...
Bartolomeo33 Posted February 5, 2013 Author Report Share Posted February 5, 2013 Quote Link to comment Share on other sites More sharing options...
Khadimtafa Dramé Posted February 5, 2013 Report Share Posted February 5, 2013 Quote Link to comment Share on other sites More sharing options...
abdelkrim3x Posted February 5, 2013 Report Share Posted February 5, 2013 Quote Link to comment Share on other sites More sharing options...
Bartolomeo33 Posted February 6, 2013 Author Report Share Posted February 6, 2013 Quote Link to comment Share on other sites More sharing options...
skial Posted February 7, 2013 Report Share Posted February 7, 2013 Quote Link to comment Share on other sites More sharing options...
Bartolomeo33 Posted February 7, 2013 Author Report Share Posted February 7, 2013 Quote Link to comment Share on other sites More sharing options...
skial Posted February 8, 2013 Report Share Posted February 8, 2013 Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.